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Cytochrome P-450 (CYP) 1A1 plays a key role in phase I metabolism of polycyclic aromatic hydrocarbons and in
estrogen metabolism. It is expressed predominantly in extrahepatic tissues, including the breast. FourCYP1A1 gene
polymorphisms (3801T/C, Ile462Val, 3205T/C, and Thr461Asp) have been studied in relation to breast cancer.
The 3801C variant is more common than the Val variant. Both variants occur more frequently in Asians than in White
populations. The 3205T/C polymorphism has been observed in African Americans only. Little data are available on
thegeographic/ethnic distribution of theThr461Asppolymorphism. The functional significanceof thepolymorphisms is
unclear. In 17 studies, no consistent association between breast cancer and CYP1A1 genotype was found. Meta-
analysis found no significant risk for the genotypes 1)3801C/C (relative risk (RR)¼ 0.97, 95%confidence interval (CI):
0.52, 1.80) or 3801T/C (RR¼ 0.91, 95%CI: 0.70, 1.19) versus 3801T/T, 2)Val/Val (RR¼ 1.04, 95%CI: 0.63, 1.74) or
Ile/Val (RR¼ 0.92, 95%CI: 0.76, 1.10) versus Ile/Ile, or 3)Asp/Asp (RR¼ 0.95, 95%CI: 0.20, 4.49) or Thr/Asp (RR¼
1.12, 95% CI: 0.87, 1.43) versus Thr/Thr. Future studies should explore possible interactions between CYP1A1 and
sources of polycyclic aromatic hydrocarbons, markers of estrogen exposure, other lifestyle factors influencing
hormonal levels, and other genes involved in polycyclic aromatic hydrocarbon metabolism or hormonal biosynthesis.

breast neoplasms; cytochrome P-450 CYP1A1; epidemiology; polymorphism, genetic

Abbreviations: CI, confidence interval; COMT, catechol-O-methyltransferase; CYP, cytochrome P-450; GST, glutathione
S-transferase; PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; RR, relative risk.

Editor’s note: This paper is also available on the website
of the Human Genome Epidemiology Network (http://
www.cdc.gov/genomics/hugenet/).

GENE

Cytochrome P-450 (CYP) 1A1 is a key enzyme in
phase I bioactivation of xenobiotics (1). It contributes to

aryl hydrocarbon hydroxylase activity, catalyzing the first
step in the metabolism of a number of polycyclic aromatic
hydrocarbons (PAHs), such as the tobacco carcinogen
benzo[a]pyrene, to their ultimate DNA-binding forms (2).
It is also involved in estrogen metabolism, catalyzing the
hydroxylation of 17b-estradiol at the C-2 position (3, 4).

The CYP1A1 gene, located at 15q22-q24, comprises
seven exons and six introns and spans 5,810 base pairs (5).
In humans, CYP1A1 is under the regulatory control of the
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aryl hydrocarbon receptor, a transcription factor that
regulates gene expression (6).

CYP1A1 expression occurs predominantly in extrahe-
patic tissue (7). CYP1A1 messenger RNA has been detected
in normal and cancerous breast tissue (8, 9) and can be
induced in human-breast-derived cell lines (6).

GENE VARIANTS

Several mutations in CYP1A1 have been described (for
CYP1A1 allele nomenclature, refer to the following website:
http://www.imm.ki.se/CYPalleles), and four polymorphisms
have been studied in relation to breast cancer. Table 1
describes these four polymorphisms and the allele nomen-
clature system (10–13). The 3801T/C (14, 15) and
3205T/C (16) polymorphisms are located in the 3# non-
coding region. The 2455A/G (17) and 2453C/A (13)
polymorphisms arise close together in exon 7 and result in
the amino acid changes Ile462Val and Thr461Asp, respec-
tively. Because the studies did not always include informa-
tion on all polymorphisms, it was often not possible to
identify which of the *2A, *2B, or *2C alleles were present.
Therefore, the ‘‘3801T/C,’’ ‘‘Ile462Val,’’ ‘‘3205T/C,’’
and ‘‘Thr461Asp’’ nomenclature is used throughout this
review.

Genotype frequencies

In 2001, Garte et al. (18) estimated CYP1A1*2A,
CYP1A1*2B, CYP1A1*2C, and CYP1A1*3 genotype fre-
quencies in Whites, Asians, and Africans by using data from
33 studies of Whites, nine studies of Asians, and five studies
of Africans. In comparison, the present review includes data
from 69 articles, including 20 studies published between

2002 and 2004, and also summarizes data for the Thr461Asp
polymorphism.

Relevant papers were identified by searching MEDLINE
and EMBASE from 1980 to week 4 of 2004 by using the
MeSH heading ‘‘Cytochrome P-450 CYP1A1’’ or the text
words ‘‘CYP1A1’’ or ‘‘P4501A1’’ combined with theMeSH
headings ‘‘Polymorphism (Genetics),’’ ‘‘Mutation,’’ ‘‘Point
mutation,’’ ‘‘Genotype,’’ or the text words ‘‘polymorph$,’’
‘‘mutation$,’’ ‘‘gene,’’ ‘‘genes,’’ ‘‘genetic$,’’ ‘‘genotyp$,’’ or
‘‘allel$.’’ Additional articles were identified from the Centers
for Disease Control and Prevention Genomics and Disease
Prevention Information System and by hand searching
reference lists in published papers. Eligible studies presented
frequencies for each genotype separately in nondiseased
persons. Studies that did not include controls for breast
cancer patients were excluded if there were fewer than 200
subjects in each ethnic group, which would limit precision of
the estimates of the genotype frequencies. If there appeared
to be an overlap in subjects between studies, only the largest
study was reported. Hardy-Weinberg equilibrium was as-
sessed by using the Pearson v2 test.

Web tables 1, 2, 3, and 4 show homozygous variant and
heterozygous genotype frequencies for the 3801T/C,
Ile462Val, 3205T/C, and Thr461Asp polymorphisms (13,
17, 19–85). (This information is described in the first four of
eight supplementary tables; each is referred to as ‘‘Web
table’’ in the text and is posted on the website of the Human
Genome Epidemiology Network (http://www.cdc.gov/
genomics/hugenet/reviews.htm) as well as on the Journal’s
website (http://aje.oupjournals.org/).) The subjects in most
studies are volunteers (with the sampling frame unspecified)
or hospital or clinic patients. It is unclear whether genotype
frequencies in such series will reflect those in the general
population. Considerable data are available from Japa-
nese, western European, and White American populations.
Data are limited, or not available, for other populations.

TABLE 1. CYP1A1 3801T/C, Ile462Val, 3205T/C, and Thr461Asp polymorphisms

Allele
nomenclature

(10, 11)

Nucleotide
change

Amino acid
change

Location

Proposed allele nomenclature Reference to first
report: study, year
(reference no.)Garte (12)

Cascorbi
et al. (13)

CYP1A1*1A None CYP1A1*1 CYP1A1*1

CYP1A1*2A 3801T/C None 3# noncoding region
(downstream of
polyadenylation site)

CYP1A1*2 CYP1A1*2A Bale et al.,
1987 (14);
Spurr et al.,
1987 (15)

CYP1A1*2B 3801T/C None 3# noncoding region CYP1A1*2B Hayashi et al.,
1991 (17)

2455A/G Isoleucine/valine Exon 7, codon 462

CYP1A1*2C 2455A/G Isoleucine/valine Exon 7, codon 462
(heme binding
region)

CYP1A1*3 Hayashi et al.,
1991 (17)

CYP1A1*3 3205T/C None 3# noncoding region
(upstream of
polyadenylation site)

CYP1A1*4 CYP1A1*3 Crofts et al.,
1993 (16)

CYP1A1*4 2453C/A Threonine/
asparagine

Exon 7, codon 461
(heme binding
region)

CYP1A1*5 CYP1A1*4 Cascorbi et al.,
1996 (13)
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Information is also lacking on genotype frequencies in
different age groups. Most studies consider only the
3801T/C and/or Ile462Val polymorphisms, which has the
potential to result in misclassification. When individual
polymorphisms are assessed, those persons who do not carry
the specific variant may not be true wild-type homozygotes;
a proportion may carry another variant. Moreover, the
presence of the Thr461Asp polymorphism may interfere
with detection of the Ile462Val polymorphism, resulting in
overestimation of the Val allele if the polymerase chain
reaction product has not been digested with BsrD1 (13).
Genotype frequencies were in Hardy-Weinberg equilibrium,
except in two studies of the 3801T/C polymorphism (63,
65) and nine studies of the Ile462Val polymorphism (19, 41,
53, 64, 67, 70, 76, 78, 82).

3801T/C (CYP1A1*2A, CYP1A1*2B). The 3801C var-
iant is most prevalent in Asian populations, where the
frequency of the C/C genotype is 2–18 percent and that of
the T/C genotype is 32–55 percent. In European and White
American series, 0–5 percent are C/C and 9–28 percent are
T/C. Frequencies in African Americans are intermediate
between White and Asian populations (4–6 percent C/C,
35–39 percent T/C).

In our pooled analysis, the C/C genotype frequency was
13 percent (95 percent confidence interval (CI): 12.0, 14.0)
in Asians, 1 percent (95 percent CI: 0.9, 1.4) in Whites, and
6 percent (95 percent CI: 3.7, 8.1) in African Americans.
The heterozygote frequency was 44 percent (95 percent CI:
42.6, 45.6) in Asians, 17 percent (95 percent CI: 16.5, 18.0)
in Whites, and 36 percent (95 percent CI: 31.7, 40.6) in
African Americans.

Ile462Val (CYP1A1*2B, CYP1A1*2C). In all ethnic
groups, the Val variant occurs less frequently than the
3801C variant. Similar to the 3801C variant, it is most
common among Asians, where 1–8 percent are Val/Val and
15–46 percent are Ile/Val. In Europeans and US Whites, at
most 3 percent are Val/Val and as many as 15 percent are Ile/
Val. The Val variant is less common among African
Americans than Whites. In studies including African
Americans, no subjects had the Val/Val genotype, but up
to 6 percent were Ile/Val.

Our pooled estimate of Val/Val genotype frequency was 5
percent (95 percent CI: 4.0, 5.0) in Asians, 0.7 percent (95
percent CI: 0.5, 0.8) in Whites, and 0 percent in African
Americans. The pooled estimate of Ile/Val genotype fre-
quency was 31 percent (95 percent CI: 29.5, 31.7), 8 percent
(95 percent CI: 7.8, 8.9), and 5 percent (95 percent CI: 3.2,
7.3), respectively.

3205T/C (CYP1A1*3). The 3205C variant was origi-
nally thought to occur in African Americans only. This view
is supported by studies of Turkish (34), French (84), German
(13), Polish (50), Russian (51), and US White subjects (63,
65) in whom the 3205C variant was not found. In four
African-American series, less than 1 percent had the C/C
genotype, while 14–24 percent were heterozygotes. In our
pooled analysis, the C/C and T/C genotype frequencies were
0.1 percent (95 percent CI: 0.0, 0.8) and 15 percent (95
percent CI: 12.8, 18.3), respectively, in African Americans.

Thr461Asp (CYP1A1*4). Asp/Asp homozygotes are very
rare (�1 percent). The Thr/Asp genotype frequency is 4–12

percent in Turkish, European, and White North American
populations. The pooled estimates of the Asp/Asp and Thr/
Asp genotype frequencies in Whites were 0.2 percent (95
percent CI: 0.1, 0.4) and 8 percent (95 percent CI: 7.1, 8.8),
respectively.

Associations between theCYP1A1polymorphisms. Stud-
ies of linkage between the polymorphisms are limited by
the relative rarity of the variants. From the comparatively
few studies carried out, the 3801T/C and Ile462Val
polymorphisms appear to be closely linked in Asians (17,
21, 25, 34), less closely linked in Europeans (41, 52), and
not linked in African Americans (60). In 81 Africans and
African Americans carrying the 3205C variant, 23 percent
also carried the 3801C variant, and no subjects carried the
Val variant (18). The Thr461Asp and 3801T/C poly-
morphisms were not linked in Turkish (34), German (13), or
Polish (50) populations. No evidence for linkage between
the Thr461Asp and Ile462Val polymorphisms was found in
White American (64) or German series (13).

Functional effects

Because the 3801T/C polymorphism is located in
the noncoding region, it was originally thought that any
apparent functional consequences of the variant were due to
linkage with another polymorphism in, for example, the
coding region or the aryl hydrocarbon receptor. However,
polymorphisms in noncoding sequences may influence gene
function by altering the level, location, or timing of gene
expression or messenger RNA stability (86).

Studies of the 3801T/C polymorphism and basal and/or
induced CYP1A1 messenger RNA expression in lympho-
cytes and placenta have been inconsistent (87–91). For the
Ile462Val polymorphism, one study found that mean
messenger RNA (induced/basal) levels increased with
number of Val variants (92). In another study, heterozygotes
for both 3801C and Val variants had twofold increased basal
CYP1A1 expression compared with homozygotes for the
3801T and Ile alleles. (63). In one study, the 3205T/C and
Thr461Asp polymorphisms were not associated with
steady-state CYP1A1 messenger RNA levels (87).

The Val variant caused a twofold increase in comple-
mentary DNA–expressed activity in transformed yeast cells
(93), but the kinetic properties of the two variants do not
differ (94). In purified Escherichia coli, there was no
difference between the allelic variants in benzo[a]pyrene
bioactivation (95).

Studies of genotype and CYP1A1-dependent enzymatic
activity in lymphocytes are inconsistent. Studies either
suggested high activity associated with the 3801C and Val
variants (89, 92, 96–98) or produced null findings (99–102).
No significant effect of the Thr461Asp polymorphism has
been found (101, 102).

The 3801C variant has been associated with higher levels
of DNA adducts in breast tissue in some studies (103, 104),
but not others (105–107). Findings from one study of
Ile462Val and Thr461Asp polymorphisms and breast tissue
adducts were null (106). Results of studies of 3801T/C,
Ile462Val, and Thr461Asp polymorphisms in other tissues
have been inconsistent (91, 108–112), as have those in white
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blood cells (111–122). Findings of studies of 3801T/C
and/or Ile462Val and levels of DNA damage, as assessed by
8-hydroxydeoxyguanosine in breast tissue (123), urine (124,
125) or leukocytes (126), or DNA-protein cross-links (33)
have been null.

The 3801T/C polymorphism does not appear to be asso-
ciatedwith serum estrone or estradiol levels (127) or the ratio
of baseline urinary estrogen metabolites (2-hydroxyestrone/
16-hydroxyestrone) (63). However, after indole-3-carbinol
was ingested, the 2-hydroxyestrone/16-hydroxyestrone ratio
increased significantly for persons with the 3801T/T geno-
type; heterozygotes showed no significant increase (63).

In some (74, 128–132), but not all (75, 111, 115, 116,
133–135), studies, the 3801C and Val variants are associated
with higher urinary levels of 1-hydroxypyrene, a biomarker
for PAH exposure. Results of studies of Ile462Val and
urinary levels of 2-naphthol, another PAH biomarker, are
inconsistent (74, 135). Findings of studies of the CYP1A1
genotype and urinary levels of cotinine (136), malondialde-
hyde (124), and biomarkers for organic solvent exposure
(137) have been null.

Mammographic breast density is positively related to
breast cancer risk (138, 139). In one study, neither the
3801T/C nor the Ile462Val polymorphisms were associ-
ated with breast density (140).

DISEASE

In 2002, over 1 million new cases of breast cancer were
diagnosed worldwide (141). In both developed and de-
veloping countries, it is the most common cancer in women
(142). In developed countries, incidence increases rapidly
with age to about age 50 years; thereafter, rates rise less
rapidly with age (143). There is a 16-fold variation in
incidence between the population with the highest rate
(Montevideo, Uruguay, world age-standardized incidence
114.9 per 100,000 in 1993–1995) and that with the lowest
(The Gambia, 7.0 per 100,000 in 1997–1998) (144). In
many populations, there has been a consistent long-term rise
in incidence, which cannot be entirely attributed to the
introduction of mammographic screening (145).

The autosomal dominant susceptibility genes, BRCA1
and BRCA2, account for about 5 percent of breast cancers
(146, 147). Familial aggregation, which confers increased
risk for first- and second-degree relatives (148, 149), does
not appear to be entirely due to BRCA1 and BRCA2 (150),
suggesting that other aspects of genetic susceptibility are
important.

The products ofCYP1A1 are involved in estrogen and PAH
metabolism. The most firmly established risk factors for
breast cancer relate to cumulative exposure of the breast to
endogenous hormones, particularly estrogen (143). Risk is
increased for women with longer cumulative exposure, that
is, for those experiencing early menarche, late menopause,
late first full-term pregnancy, or no pregnancies (151).

Exogenous hormones have also been associated with
increased risk of breast cancer. Risk is increased among
current users of hormone replacement therapy (152, 153)
and current users of oral contraceptives (154, 155). Other

lifestyle risk factors, such as postmenopausal obesity, lack
of physical activity (156), and alcohol intake (157), may
influence risk via effects on estrogen levels.

PAHs may be involved in breast cancer etiology. These
substances are lipophilic and are stored in adipose tissue,
including that of the breast (158), and they are activated and
metabolized by breast epithelial cells (159). Adduct levels
are higher in normal breast tissue of breast cancer cases than
in that of healthy controls (160), although it is unclear
whether this is a cause or effect of disease. PAHs also affect
estrogen production and metabolism, thereby acting as
xenoestrogens; many xenoestrogenic compounds induce
mammary carcinogenesis in experimental animals (161).
PAHs themselves are powerful mammary carcinogens in
mice (162).

Tobacco smoke is a major environmental source of PAH
exposure (163). Most studies of breast cancer and smoking
show aweak positive or null association (164–170), although
the associationmay be stronger for premenopausal women or
for those who started smoking at an early age (171, 172) or
smoked before their first full-term pregnancy (173). Al-
though positive associations with passive smoking have been
reported (168, 174, 175), a recent review concluded that this
factor was unlikely to increase risk (176).

PAHs (and heterocyclic amines) are formed when meats
are exposed to temperatures that cause pyrolysis (177). An
expert review of observational evidence and a recent meta-
analysis suggested that high-meat diets increase breast
cancer risk (178, 179), and, whereas most investigators
have not considered cooking methods, some studies found
raised risk with increased consumption of fried, broiled,
and/or well-done meat (180–183).

ASSOCIATIONS

Web tables 5, 6, 7, and 8 summarize 17 studies ofCYP1A1
and breast cancer risk (25, 32, 33, 38, 45, 56, 63, 65, 66, 73,
79, 81, 83, 107, 127, 184, 185) identified by using the search
strategy described earlier, with the addition of the MeSH
heading ‘‘Breast neoplasms’’ or the text word ‘‘breast.’’ The
subjects included in the studies of Huang et al. (32, 186),
Taioli et al. (63, 187), Li et al. (105) and Zhu et al. (107), and
Ritchie et al. (188) and Bailey et al. (65) may overlap.
Therefore, only the largest of each set was included in Web
tables 5, 6, 7, and 8 and in our meta-analyses.

Meta-analyses of studies of 3801T/C, Ile462Val, and
Thr461Asp were carried out. From the papers, we abstracted
the odds ratios or relative risks for homozygous variants
(3801C/C, Val/Val, or Asp/Asp) and heterozygotes (3801T/C,
Ile/Val, or Thr/Asp) versus homozygous wild types (3801T/T,
Ile/Ile, or Thr/Thr). When reported, the adjusted effect
estimate was included in the analysis in preference to the
unadjusted one. If odds ratios were not reported, we com-
puted unadjusted odds ratios from the data presented.
Analyses were conducted by using Stata statistical software,
release 7.0 (189). Heterogeneity was assessed by the Q test,
with a fixed-effects model used if p � 0.1 and a random-
effects model used if p < 0.1. The I2 statistic was also
calculated as a measure of consistency between studies
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(190). Except for the association between breast cancer and
the 3801T/C polymorphism, the estimates of effect in the
first published study were similar to those for the cumulative
meta-analyses.

Study characteristics

Four studies took place in Japan, two in Taiwan, six in the
United States, and one each in Canada, Brazil, France,
Greece, and the United Kingdom. Thirteen studies analyzed
the 3801T/C polymorphism (2,484 cases), 10 analyzed
the Ile462Val polymorphism (3,535 cases), two analyzed
the 3205T/C polymorphism (280 cases), and three
analyzed the Thr461Asp polymorphism (2,245 cases).

In one study, case DNA was derived from tumor speci-
mens (38); in the remainder, and for all control series, DNA
came from blood samples. Of the US studies, two involved
subjects of whom the majority (or all) were White, three
included more than one ethnic group (analyzed separately in
two studies), and, in one, ethnicity was not reported. One
study included postmenopausal women only; all others
either consisted of both pre- and postmenopausal women
(n ¼ 6) or did not describe the subjects’ menopausal status
(n ¼ 10). Eleven studies included fewer than 200 breast
cancer cases.

In 15 studies, cases were recruited from clinics or hospital
series; in one study, cases were identified from a cancer
registry; and one study was nested within the Nurses’ Health
Study. Without information on all potentially eligible cases
in the population, it is difficult to assess the generalizability
of the results. At least four control series included ‘‘volun-
teers’’ from either an unspecified source or a convenient
population such as medical workers—a potential source of
bias. Seven studies presented estimates adjusted for poten-
tial confounding factors.

In general, the studies considered the polymorphisms
separately. Therefore, the effect of one polymorphism may
have been overshadowed by the effects of others, whereas
construction of haplotypes may have revealed effects that
were not apparent by analyzing single polymorphisms.
Studies of the Ile462Val polymorphism, with the exception
of those by Bailey et al. (65), Krajinovic et al. (56), and
Basham et al. (79), may have suffered from some minor
misclassification due to the undetected presence of the
Thr461Asp polymorphism.

3801T/C (CYP1A1*2A, CYP1A1*2B)

Most studies found no evidence of an association between
the 3801T/C polymorphism and breast cancer risk (33, 38,
45, 56, 65, 107, 127, 184, 185) (Web table 5). In Taiwan,
women with the C/C genotype had a raised risk compared
with other genotypes combined (32). African-American
women with the C/C genotype also had an increased risk
compared with those with the T/T genotype (63), but this
study included only 25 cases. The 3801C variant was
associated with reduced risk for Japanese and non-White
Brazilian women (25, 66). However, in both studies, the
cases were surgical series, and controls were not population
based.

Our meta-analysis included eight studies for which data
were available for all three genotypes separately (25, 32, 38,
45, 56, 63, 65, 66). Breast cancer risk did not differ from
unity for C/C versus T/T (random-effects relative risk
(RR) ¼ 0.97, 95 percent CI: 0.52, 1.80; Q ¼ 15.26, p ¼
0.08) or for T/C versus T/T (random-effects RR ¼ 0.91,
95 percent CI: 0.70, 1.19; Q ¼ 17.34, p ¼ 0.07). The I2

statistics for these analyses were 41 percent and 42 percent,
respectively, indicatingmoderate heterogeneity across studies.

Ile462Val (CYP1A1*2B, CYP1A1*2C)

A Japanese study found a significantly reduced risk for
women with the Ile/Val genotype compared with the Ile/Ile
genotype (RR ¼ 0.66, 95 percent CI: 0.44, 0.99) (25).
However, meta-analysis found no association between
breast cancer risk and the Val/Val (fixed-effects RR ¼
1.04, 95 percent CI: 0.63, 1.74; Q ¼ 4.59, p ¼ 0.33, I2 ¼ 13
percent) (25, 32, 73, 79, 81) or Ile/Val (fixed-effects RR ¼
0.92, 95 percent CI: 0.76, 1.10; Q¼ 11.57, p¼ 0.17, I2¼ 31
percent) (25, 32, 56, 63, 65, 73, 79, 81) genotypes versus
the Ile/Ile genotype.

3205T/C (CYP1A1*3)

There was no association between the 3205C variant and
breast cancer in the two available studies (Web table 7). How-
ever, these studies each included small series (n ¼ 27 and
n ¼ 59) of African-American breast cancer cases (63, 65).

Thr461Asp (CYP1A1*4)

In a Canadian study, carriers of the Asp variant had an
increased breast cancer risk (adjusted RR ¼ 3.3, 95 percent
CI: 1.1, 9.7) (56) (Web table 8). Results of the other studies,
in White American women and African-American women,
and in White women in England, were null. Meta-analysis
found no association between disease risk and the Asp/Asp
(fixed-effects RR ¼ 0.95, 95 percent CI: 0.20, 4.49; Q ¼
0.52, p ¼ 0.77, I2 ¼ 0 percent) or Thr/Asp (fixed-effects
RR ¼ 1.12, 95 percent CI: 0.87, 1.43; Q ¼ 0.89, p ¼ 0.64,
I2 ¼ 0 percent) genotypes versus the Thr/Thr genotype (56,
65, 79).

Combinations of genotypes

Taioli et al. (187) assessed the impact of combinations of
3801T/C, Ile462Val, and 3205T/C genotypes on breast
cancer risk. Compared with homozygotes for the 3801T, Ile,
and 3205T alleles, only the 3801C/C genotype was associ-
ated with increased risk for African-American women
(RR ¼ 5.8, 95 percent CI: 1.0, 36.0), but the effect estimate
was imprecise.

One study combined Ile462Val and Thr461Asp geno-
types and found no significant effect in any of the three
combined genotype groups relative to the group with the
Ile/Ile and Thr/Thr genotypes (79). Another study assessed
disease risk for subjects with either the Val or Asp variant;
no significant association was found in White women or
African-American women (65).

CYP1A1 and Breast Cancer 905
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Subgroup analyses

Menopausal status, age at menarche, and estrogen and
progesterone receptor status. In a Taiwanese study, the
association of the 3801C/C genotype with raised disease
risk was evident in postmenopausal, but not premenopausal,
women, and further analysis suggested that the relation
might be more pronounced for women experiencing early
menarche (32). Other studies found no association between
the 3801C variant and breast cancer when subjects were
stratified by menopausal status (66, 185) or age at menarche
(66). There was no evidence for an association with the
Ile462Val polymorphism for either pre- or postmenopausal
women (32, 65, 79, 185). In a Canadian study, the increased
risk associated with the Thr461Asp polymorphism was
evident for postmenopausal women only (56); however,
a study in the United Kingdom found no difference in
Thr461Asp genotypic risks by menopausal status (79).
There were no significant associations between CYP1A1
polymorphisms and estrogen or progesterone receptor status
(25, 65, 127, 185).

Age at diagnosis and clinical characteristics. Studies in-
vestigating CYP1A1 genotype and age at diagnosis of breast
cancer have produced inconsistent results (25, 32, 38, 65, 81).
The 3801C variant has been significantly associated with
a higher frequency of lymph-node metastasis and the Val
variant with a higher frequency of small tumors (<2 cm),
while neither variant was associated with histology or
histologic grade (25). Other studies found no association
between the four polymorphisms and tumor size, stage,
type, grade, or nodal status (65) or between 3801T/C or
Ile462Val and tumor type or stage of disease (185).

Survival

In a British study of 1,793 incident or prevalent breast
cancer cases, the Ile462Val polymorphism was not related to
survival (191). The hazard ratio was reduced for Thr/Asp
heterozygotes compared with Thr/Thr homozygotes, but
not significantly (hazard ratio ¼ 0.67, 95 percent CI: 0.33,
1.37) (191).

Other diseases

CYP1A1 has been explored in relation to several cancers,
particularly those in which smoking is implicated. In pooled
and meta-analyses, the 3801C and Val variants were
associated with increased lung cancer risk in Whites, but
not Asians (192–195). Neither the 3205C (196) nor the Asp
(13, 197) variants were associated with lung cancer risk.
Also investigated, with mainly either inconsistent or un-
confirmed results, have been tumors of the head and neck
(29, 31, 40, 43, 48, 82, 198–215), large bowel (24, 53, 58,
216–221), prostate (72, 222–224), female gynecologic sites
(62, 76, 225–230), skin (231, 232), and kidney (84) and liver
(28), as well as leukemias and lymphomas (36, 57, 78, 233–
238). Results of studies of bladder (44), brain (239), and
pancreatic (64, 108, 240–242) cancer have been null.

Associations have been found between CYP1A1 and other
diseases, including male infertility (243), systemic lupus

erythematosus (244), type II porphyria cutanea tarda (245),
psoriasis (39), ankylosing spondylitis (246), and rheumatoid
arthritis (247). Findings from studies of endometriosis (46,
248, 249) and Parkinson’s disease (54, 68, 250, 251) have
been inconsistent, while those for asthma (252), athero-
sclerosis (253), cirrhosis (37), Crohn’s disease (254), age-
related macular degeneration (255), leukoplakia (20), early
pregnancy loss (256), acne (41), and oral clefting (257) have
been null.

INTERACTIONS

If CYP1A1 is involved in breast cancer, it may influence
disease risk by interacting with exposure (or indicators of
exposure) to PAHs or estrogen, for example, or with other
genes involved in the metabolism of carcinogens, estrogens,
or other hormones. Sample size is particularly important in
this context. For instance, to detect a multiplicative in-
teraction, very large sample sizes are required for adequate
power (258). Although the sample size needed to detect
other types of interactions may be smaller (259), a priori it is
not usually clear what model of interaction would be
predicted.

Gene-environment interactions

Smoking. In five studies investigating genotype-smoking
interactions (63, 65, 79, 81, 185), two found evidence of an
interaction (81, 185). In Ambrosone et al.’s study (81),
adjusted relative risks for Val carriers versus Ile/Ile homo-
zygotes among nonsmokers, light smokers (<29 pack-years
of exposure), and heavy smokers (�29 pack-years) were 1.3
(95 percent CI: 0.62, 2.70), 5.2 (95 percent CI: 1.16, 23.56),
and 0.9 (95 percent CI: 0.24, 3.09), respectively, but no
formal test of interaction was conducted. Ishibe et al. (185)
found no interaction between pack-years of smoking and
either 3801T/C or Ile462Val polymorphisms, but they
observed effect modification for smoking status at diagnosis
and age at which smoking started. Risk was significantly
raised for current smokers carrying the 3801C variant versus
3801T/T nonsmokers (p for interaction ¼ 0.06) and for
womenwith either variantwho started smoking before age 18
years versus 3801T/T nonsmokers (p for interaction ¼ 0.04)
and Ile/Ile nonsmokers (p for interaction ¼ 0.08).

The numbers analyzed in the studies of genotype-smoking
interactions were small, and interpretation is difficult be-
cause of differences in the way in which interactions were
assessed (stratifying by smoking status (63, 81) or genotype
(65), or using a single reference group of smoking status and
genotype combined (185)) and in categorization of smoking
status. For example, the interaction patterns observed by
Ambrosone et al. (81) or Ishibe et al. (185) would not be
detectable by using an ever/never smoking categorization, as
has been used in other studies (63, 65).

Polychlorinated biphenyls (PCBs). PCBs have been
linked to breast cancer risk because of their estrogenic (260)
and tumor-promoting (261) properties. In the Nurses’ Health
Study, a modest interaction between the Ile462Val poly-
morphism and plasma PCBs was found for postmenopausal,
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but not premenopausal, breast cancer (262). Among post-
menopausal subjects, the adjusted relative risk for Val
carriers in the upper tertile of plasma PCB levels, compared
with Ile/Ile homozygotes in the lowest PCB tertile, was 2.78
(95 percent CI: 0.99, 7.82, p for interaction ¼ 0.05). There
was no interaction between PCBs and 3801T/C (262). In
a subset of a study inwesternNewYork (81),Val carriers with
an above-median PCB body burden had an increased risk
compared with Ile/Ile homozygotes with a below-median
PCB burden (adjusted RR ¼ 2.9, 95 percent CI: 1.18, 7.45;
p for interaction ¼ 0.13) (263).

Alcohol. Basham et al. (79) reported no interactions
between Ile462Val or Thr461Asp polymorphisms and
alcohol consumption. However, results were not shown.

Gene-gene interactions

CYP1A1 and glutathione S-transferase (GST) gene activ-
ities may be interrelated. The GST genes belong to the Ah
gene battery, since GST is one of six enzymes regulated by
the aryl hydrocarbon receptor (1). In human B-cell lines, ab-
sence ofGSTM1was associated with induction of high levels
of CYP1A1 messenger RNA by 2,3,7,8-tetrachlorodibenzo-
p-dioxin, and presence of GSTM1 was associated with
induction of low levels (264). Four breast cancer studies
found no evidence of a CYP1A1-GSTM1 interaction (56, 65,
66, 81), although CYP1A1-GSTM1 genotype combinations
have been associated with age at presentation (38). In two
relatively small studies assessing CYP1A1-GSTT1 genotype
combinations, risk estimates were not significant, and tests
for interaction were not reported (65, 66). Another study
(45) found no significant differences in combined CYP1A1
3801T/C, GSTM1, and GSTT1 genotype frequencies be-
tween breast cancer patients and controls.

CYP17, CYP19, and catechol-O-methyltransferase
(COMT) are involved in steroid hormone metabolism
(265, 266). One study found an increased breast cancer risk
associated with the presence of two ‘‘high-risk’’ genotypes,
defined as homozygosity for the CYP1A1 3801C, CYP17 A2,
or COMT low-activity alleles (RR ¼ 3.5, 95 percent CI:
1.06, 12.04), but no test for interaction was conducted (186).
In another study, 3801T/T homozygotes carrying the CYP19
(TTTA)7(�3bp) allele had increased risk of estrogen-receptor-
positive breast cancer (adjusted RR ¼ 3.00, 95 percent CI:
1.56, 5.74) compared with women carrying the 3801C
variant but not the CYP19 (TTTA)7(�3bp) allele (127).

LABORATORY TESTS

CYP1A1 3801T/C, Ile462Val, 3205T/C, and
Thr461Asp polymorphisms are detected by using polymer-
ase chain reaction followed by digestion with MspI for
3801T/C (17, 38, 65); NcoI (65, 81, 185), HincII (32), or
BsrD1 (65) for Ile462Val;MspI for 3205T/C (16); andBsaI
for Thr461Asp (65). The polymorphisms 3801T/C and
3205T/C can be detected simultaneously from one poly-
merase chain reaction product by usingMspI and SphI (65).
For accurate genotyping of Ile462Val, the presence of Val
(and absence ofAsp) can be verified byBsrD1 digestion (13).

Success rates for DNA extraction and genotype assign-
ment, and reproducibility, are important indicators of
analytic validity of genotyping (267), but few breast cancer
studies reported this information. Taioli et al. (187) and
Ishibe et al. (185) successfully assigned 3801T/Cgenotype
to 99.7 percent and 99.8 percent, respectively, of subjects
providing samples, and Ile462Val genotype to 95.9 percent
and 96.6 percent, respectively; however, Ambrosone et al.
(81) obtained interpretable polymerase chain reaction assays
for only 69 percent of subjects consenting to phlebotomy.

POPULATION TESTING

Current evidence does not suggest that there would be
value in testing for the CYP1A1 genotype in isolation to
predict breast cancer risk. In addition, the evidence on joint
effects of CYP1A1 variants and variants of other genes is
very limited. The possibility of raised risk associated with
some genotypes in combination with tobacco exposure
should be addressed via standard public health advice on
smoking cessation.

CONCLUSIONS AND RECOMMENDATIONS FOR
RESEARCH

The CYP1A1 3801C variant is more common than the Val
variant. Both variants occur more frequently in Asian than in
White populations. The 3205C variant has been observed in
African Americans only, and little data are available on the
geographic or ethnic distribution of the Thr461Asp poly-
morphism. The 3205T/C and Thr461Asp polymorphisms
should be investigated in African, Asian, and Hispanic
populations. The functional significance of all four poly-
morphisms is unclear,which could be due to the small sample
sizes of most studies. Further investigation is warranted.

No consistent associations between breast cancer and
CYP1A1 polymorphisms were found. While meta-analyses
have greater power and precision for detecting gene-disease
associations, our meta-analyses were limited by different
genotype categorizations between studies. For the purposes
of future meta-analyses, authors should provide results for
all genotypes separately.

The 3801T/C and Ile462Val polymorphisms may mod-
ify the smoking-disease association, although the evidence is
limited and inconsistent. A similar ‘‘inverse dose effect’’ has
been observed in studies of CYP1A1, smoking, and lung
cancer (60, 184, 268), and it has been suggested that the
genetic variant might confer increased sensitivity to lower
levels of exposure (269). Additional investigation is needed.
The Val variant may interact with PCB levels to affect breast
cancer risk, but confirmation is necessary. There was no
evidence thatGSTM1 orGSTT1 andCYP1A1 genotypes have
a joint effect on disease risk. Studies suggesting interactions
with CYP17, CYP19, and COMT should be replicated.
Interpreting the studies of interaction was difficult because
of the different approaches used; adopting a more unified
approach (e.g., Botto and Khoury (270)) in future studies
would aid interpretation and synthesis of evidence.
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Studies are needed to explore joint effects on breast cancer
risk of theCYP1A1 genotype and 1) sources of PAH exposure
other than tobacco, 2) markers of exposure to endogenous
estrogens, 3) exposure to exogenous estrogens, 4) other
lifestyle factors that influence hormone levels, 5) other genes
encoding enzymes involved in PAHmetabolism, and 6) other
genes involved in hormonal biosynthesis. To detect gene-
environment or gene-gene interactions, future studies must
be large, and pooled analyses should be considered.
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APPENDIX

Internet Sites

Data on cancer incidence, survival, and mortality

International Agency for Research on Cancer—Cancer
Mondial: http://www-dep.iarc.fr/

Surveillance, Epidemiology, and End Results Program:
http://www.seer.cancer.gov/publicdata/

National Programme of Cancer Registries (NPCR):
http://www.cdc.gov/cancer/npcr

Information on cancer

Cancer Research UK: http://www.cancerresearchuk.org
American Association of Cancer Research: http://

www.aacr.org/
National Cancer Institute: http://cancer.gov/cancerinfo/
International Union against Cancer: http://www.uicc.ch/
American Cancer Society: http://www.cancer.org/

docroot/home/index.asp

Genetic information

Human Genome Epidemiology Network (HuGENet):
http://www.cdc.gov/genomics/hugenet/default.htm

Centers for Disease Control and Prevention Office of
Genomics and Disease Prevention–medical literature
search: http://www.cdc.gov/genomics/info/medlit.htm

Public Health Genetics Unit: http://www.phgu.org.uk/
index.php

Human Gene Mutation Database: http://archive.uwcm.
ac.uk/uwcm/mg/hgmd0.html

OMIM (Online Mendelian Inheritance in Man): http://
www.ncbi.nlm.nih.gov/Omim/

GenAtlas: http://www.dsi.univ-paris5.fr/genatlas/
GeneCards: http://www.cgal.icnet.uk/genecards/
The National Center for Biotechnology Information:

http://www.ncbi.nlm.nih.gov/
Human cytochrome P-450 allele nomenclature: http://

www.imm.ki.se/CYPalleles/
MRC Rosalind Franklin Centre for Genomics Research

(includes links to other sites via The Genome Web): http://
www.hgmp.mrc.ac.uk/

Links to other sites: http://cedar.genetics.soton.ac.uk/
public_html/links.html
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